The Hausdorff fuzzy quasi-metric
نویسندگان
چکیده
Removing the condition of symmetry in the notion of a fuzzy (pseudo)metric, in Kramosil and Michalek’s sense, one has the notion of a fuzzy quasi-(pseudo-)metric. Then for each fuzzy quasi-pseudo-metric on a set X we construct a fuzzy quasipseudo-metric on the collection of all nonempty subsets of X, called the Hausdorff fuzzy quasi-pseudo-metric. We investigate several properties of this structure and present several illustrative examples as well as an application to the domain of words. The notion of Hausdorff fuzzy quasi-pseudo-metric when quasi-pseudo-metric fuzziness is considered in the sense of George and Veeramani is also discussed.
منابع مشابه
Fixed Fuzzy Points of Fuzzy Mappings in Hausdorff Fuzzy Metric Spaces with Application
Recently, Phiangsungnoen et al. [J. Inequal. Appl. 2014:201 (2014)] studied fuzzy mappings in the framework of Hausdorff fuzzy metric spaces.Following this direction of research, we establish the existence of fixed fuzzy points of fuzzy mappings. An example is given to support the result proved herein; we also present a coincidence and common fuzzy point result. Finally, as an application of ou...
متن کاملHyperspace of a fuzzy quasi-uniform space
The aim of this paper is to present a fuzzy counterpart method of constructing the Hausdorff quasi-uniformity of a crisp quasi-uniformity. This process, based on previous works due to Morsi cite{Morsi94} and Georgescu cite{Georgescu08}, allows to extend probabilistic and Hutton $[0,1]$-quasi-uniformities on a set $X$ to its power set. In this way, we obtain an endofunctor for each one of the c...
متن کاملConvergence of an Iterative Scheme for Multifunctions on Fuzzy Metric Spaces
Recently, Reich and Zaslavski have studied a new inexact iterative scheme for fixed points of contractive and nonexpansive multifunctions. In 2011, Aleomraninejad, et. al. generalized some of their results to Suzuki-type multifunctions. The study of iterative schemes for various classes of contractive and nonexpansive mappings is a central topic in fixed point theory. The importance of Banach ...
متن کاملIndicator of $S$-Hausdorff metric spaces and coupled strong fixed point theorems for pairwise contraction maps
In the study of fixed points of an operator it is useful to consider a more general concept, namely coupled fixed point. Edit In this paper, by using notion partial metric, we introduce a metric space $S$-Hausdorff on the set of all close and bounded subset of $X$. Then the fixed point results of multivalued continuous and surjective mappings are presented. Furthermore, we give a positive resul...
متن کاملThe Wijsman structure of a quantale-valued metric space
We define and study a quantale-valued Wijsman structure on the hyperspace of all non-empty closed sets of a quantale-valued metric space. We show its admissibility and that the metrical coreflection coincides with the quantale-valued Hausdorff metric and that, for a metric space, the topological coreflection coincides with the classical Wijsman topology. We further define an index of compactnes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 161 شماره
صفحات -
تاریخ انتشار 2010